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Digenic Inheritance of Early-Onset Glaucoma: CYP1B1, a Potential
Modifier Gene
Andrea L. Vincent,1,2,3 Gail Billingsley,2 Yvonne Buys,2,3 Alex V. Levin,1 Megan Priston,2
Graham Trope,2,3 Donna Williams-Lyn,2 and Elise Héon1,2,3

1Department of Ophthalmology, the Hospital for Sick Children, 2the Vision Science Research Program, University Health Network, and
3Department of Ophthalmology, Toronto Western Hospital, University of Toronto, Toronto

“Early-onset glaucoma” refers to genetically heterogeneous conditions for which glaucoma manifests at age 5–40
years and for which only a small subset is molecularly characterized. We studied the role of MYOC, CYP1B1, and
PITX2 in a population ( ) affected with juvenile or early-onset glaucoma from the greater Toronto area. Byn p 60
a combination of single-strand conformation polymorphism and direct cycle sequencing, MYOC mutations were
detected in 8 (13.3%) of the 60 individuals, CYP1B1 mutations were detected in 3 (5%) of the 60 individuals,
and no PITX2 mutations were detected. The range of phenotypic expression associated with MYOC and CYP1B1
mutations was greater than expected. MYOC mutations included cases of juvenile glaucoma with or without
pigmentary glaucoma and mixed-mechanism glaucoma. CYP1B1 mutations involved cases of juvenile open-angle
glaucoma, as well as cases of congenital glaucoma. The study of a family with autosomal dominant glaucoma
showed the segregation of both MYOC and CYP1B1 mutations with disease; however, in this family, the mean
age at onset of carriers of the MYOC mutation alone was 51 years (range 48–64 years), whereas carriers of both
the MYOC and CYP1B1 mutations had an average age at onset of 27 years (range 23–38 years) ( ). ThisP p .001
work emphasizes the genetic heterogeneity of juvenile glaucoma and suggests, for the first time, that (1) congenital
glaucoma and juvenile glaucoma are allelic variants and (2) the spectrum of expression of MYOC and CYP1B1
mutations is greater than expected. We also propose that CYP1B1 may act as a modifier of MYOC expression and
that these two genes may interact through a common pathway.

Introduction

Glaucoma is a genetically heterogeneous cause of blind-
ness that affects all age groups and all populations.
When glaucoma manifests before the age of 40 years, it
tends to be more aggressive, more resistant to medical
therapy, and associated with more severe visual impair-
ment (Ellis 1948; Johnson et al. 1993). Glaucoma in the
first 40 years of life includes congenital/infantile glau-
coma, which manifests at the age of !5 years (DeLuise
and Anderson 1983); juvenile open-angle glaucoma
(JOAG), in which the age at onset is 5–40 years; and
variants that are associated with other changes in the
anterior segment of the eye, such as pigment dispersion
and Axenfeld-Rieger syndrome.

Juvenile glaucoma and congenital glaucoma (CG) are
genetically heterogeneous, and only a small subset are
molecularly characterized, with most mutations identi-
fied in MYOC (Fingert et al. 1999) and CYP1B1 (Bejjani
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et al. 1998). MYOC (MIM 601652), which is located
on chromosome 1q25 at the GLC1A locus (MIM
137750) (Sheffield et al. 1993), was the first open-
angle–glaucoma gene to be characterized and was as-
sociated with JOAG and primary adult-onset open-angle
glaucoma (POAG). MYOC encodes a 504-amino-acid
glycoprotein, which contains an olfactomedin domain
(residues 246–501) where the majority (42/46 [91.3%])
of the mutations documented have been identified. The
biological interactions of mutant myocilin protein and
its role in the pathophysiology of glaucoma are still un-
clear. In normal eyes, MYOC mRNA is expressed in the
iris, ciliary body, and trabecular meshwork (Fingert et al.
1998; Kubota et al. 1998; Huang et al. 2000), as well
as in retinal photoreceptor cells (Kubota et al. 1997) and
optic nerve head—specifically, the astrocytes (Noda et al.
2000). Perfusing the trabecular meshwork with mutant
recombinant protein results in an increase in outflow re-
sistance (Fautsch et al. 2000). Recent studies estimate that
MYOC mutations are found in 3.4%–5% of sporadic
POAG (Alward et al. 1998a; Fingert et al. 1999). In a
small series, Shimizu et al. (2000) identified mutations in
as many as 33% of familial cases of JOAG. The varia-
bility of GLC1A-related phenotypes is significant and
includes age at onset, severity, rate of progression, and



Vincent et al.: Genetics of Juvenile Glaucoma 449

intraocular pressure (IOP) (Alward et al. 1998a; Fingert
et al. 1999). This variability, which can be inter- or in-
trafamilial, is influenced by factors not yet identified,
some of which are likely to be genetic.

Other genes, such as CYP1B1 and PITX2, may
contribute to the underlying pathogenesis of JOAG.
CYP1B1 (MIM 601771), located on chromosome
2p21 at the GLC3A locus (MIM 231300), encodes
a 543-amino-acid dioxin inducible member of the cy-
tochrome p450 gene superfamily, subfamily I. Mu-
tations in this gene are associated with autosomal
recessive CG (Stoilov et al. 1997; Bejjani et al. 1998;
Stoilov et al. 1998; Plášilová et al. 1999; Bejjani et
al. 2000; Martin et al. 2000). In ethnically mixed
populations, mutations are found in 20%–30% of
patients with CG (Héon et al. 2000; Kakiuchi-Mat-
sumoto et al. 2001), whereas, in consanguineous pop-
ulations, this increases to 85% (Stoilov et al. 1997;
Bejjani et al. 1998; Plášilová et al. 1999).

Phenotypic variability is also documented for muta-
tions of CYP1B1 but was always associated with CG.
Although these mutations commonly manifest at birth
or infancy, some family members of probands have been
identified with glaucoma manifesting later in childhood,
early adulthood, or with incomplete penetrance (Bejjani
et al. 2000; Martin et al. 2000). Recently, we reported
CYP1B1 mutations in Peters anomaly, a developmental
anomaly of the anterior segment (Vincent et al. 2001),
suggesting a role for this gene in ocular development
and beyond CG.

The mRNA expression of CYP1B1 is demonstrated
in the fetal and adult eye, specifically in the iris, tra-
becular meshwork, and ciliary body (Sutter et al. 1994;
Shimada et al. 1996; Stoilov et al. 1997), as well as in
many other sites throughout the body. A major hurdle
in determining this enzyme’s role in the pathogenesis of
CG is the identification and analysis of its natural sub-
strate. CYP1B1 is highly efficient in 4-hydroxylation of
17-b-estradiol (Hayes et al. 1996), but other metabolic
activities involve exogenous substrates, such as procar-
cinogens (Shimada et al. 1996; Crespi et al. 1997; Luch
et al. 1998).

PITX2 (MIM 601542) is another gene involved with
early-onset glaucoma and located on chromosome
4q25. It encodes a pairlike homeobox transcription fac-
tor and is expressed in developing eye, tooth, umbilicus,
and pituitary gland (Semina et al. 1996). The spectrum
of phenotypic expression of PITX2 mutations is very
broad. This includes a risk factor for the development
of glaucoma with either iris hypoplasia, Axenfeld-Rie-
ger syndrome, or Peters anomaly (Héon et al. 1995;
Alward et al. 1998b; Kulak et al. 1998; Doward et al.
1999), anomalies of development of the anterior seg-
ment of the eye. Functional assays of mutant PITX2
protein confirm a mutation-specific decrease in DNA

binding and altered transactivation properties (Koz-
lowski and Walter 2000; Priston et al. 2001). The role
that PITX2 plays in a juvenile glaucoma population
with no evidence of anterior-segment anomaly has not
been studied. We studied the role that MYOC, CYP1B1,
and PITX2 play in a population with juvenile glaucoma
from the greater Toronto area.

Methods

Patient Recruitment

The project was approved by the Toronto Hospital
human subjects review committee and the Hospital for
Sick Children research ethics board. After giving in-
formed consent in accordance with the Declaration of
Helsinki, patients were recruited through the eye clinics
of these two hospitals and referring centers. This pri-
mary patient population was affected with juvenile
glaucoma and included patients with glaucoma di-
agnosed after the age of 5 years but before the age of
40 years. Glaucoma was defined as raised IOP (122
mmHg), evidence of visual-field (VF) loss, and/or optic
nerve head cupping characteristic of glaucoma. No pa-
tient had any other associated ocular abnormalities or
systemic disease. Most patients had a normal angle on
gonioscopy, but a few had mixed-mechanism glau-
coma, defined as an angle that was occludable for 1180
degrees; some patients with anatomically normal and
open-angle glaucoma were also included.

Patients with CG were excluded from the primary
population that we studied. Patients were considered
to have CG if IOP was raised in the first five years of
life, with clinical findings consistent with prenatal or
infantile onset of glaucoma (such as breaks in Desce-
met’s membrane, enlarged cornea, or buphthalmos).
Also excluded were patients with secondary glaucoma
due to trauma, uveitis, steroid use, or anterior-segment
developmental anomalies.

Participants had a full eye examination and completed
a standardized questionnaire. For older patients, clinical
notes were reviewed with the referring ophthalmologist.
Anterior-segment photos were taken when possible.When
necessary, chloral hydrate sedation or general anesthesia
was used for the examination of younger children and for
the measurement of their IOP. Blood samples (20 ml) were
collected for DNA extraction by protocols described else-
where (Miller et al. 1988).

Mutational Analysis of MYOC

The coding regions of MYOC, exons 1–3, were am-
plified by PCR, through the use of primers and condi-
tions described elsewhere (Alward et al. 1998a). Mu-
tation screening used a combination of SSCP analysis
and direct cycle sequencing.



450 Am. J. Hum. Genet. 70:448–460, 2002

SSCP analysis of MYOC.—After PCR in 20 ml total
volume, 3 ml of PCR product was heat denatured in
SSCP loading dye, was snap cooled, and was loaded on
a 13% nondenaturing polyacrylamide gel. Samples were
tested on a Hoefer SE260 Mighty Small II (Hoefer Phar-
macia Biotech) at temperatures of 10�C and 24�C. Sam-
ples with abnormal mobility band shifts were sequenced
using the corresponding fragment as template.

Sequencing of MYOC.—Direct sequencing used am-
plified genomic DNA. Primers were tailed with M13
universal primer (5′-gtaaaacgacggccagt-3′) or M13 reverse
primer (5′-cacaggaaacagctatgac-3′). Amplicons were pu-
rified using QIAquick PCR Purification Kit (Qiagen), ac-
cording to the manufacturer’s protocol. Column-purified
amplicons were sequenced using Cy5.5-labeled M13 uni-
versal or M13 reverse primers and the Thermo Sequenase
Cycle Sequencing Core Kit (Visible Genetic). Products
were tested on a MicroGene Blaster automated DNA se-
quencing unit (Visible Genetic), as described elsewhere
(Héon et al. 1999).

To authenticate the Gly399Val mutation, a control
population of 140 individuals was screened for this
sequence change by restriction-enzyme digestion of
exon 3 with BanI (incubated at 37�C for 2 h), followed
by electrophoresis on a 2% agarose gel containing eth-
idium bromide and by visualization under UV light.
This control population included individuals known
not to have any anterior-segment anomaly, glaucoma,
or risk of glaucoma, and 40 of these were ethnically
matched to the East Indian family with this mutation.

Mutational Analysis of CYP1B1

CYP1B1 consists of three exons, of which only exons
2 and 3 code for the protein. The coding sequence of
exons 2 and 3 was amplified by PCR, through use of
primers described elsewhere (Bejjani et al. 1998; Stoilov
et al. 1998). Additional primers were designed from the
mRNA sequence (GenBank accession number U56438)
as follows: reverse, 5′-catgattcacagaccactgg-3′; and for-
ward, 5′-ccagctcgattcttggacaa-3′ (Sutter et al. 1994).
SSCP analysis and direct sequencing were undertaken in
the same fashion for CYP1B1 as for MYOC. For the
Arg368His mutation in exon 2, the control population
( ) was screened by SSCP analysis. For then p 140
Lys345Phe sequence change, 100 controls were screened
for the exon 2 by SSCP following restriction-enzyme
digestion of amplicon 2B with RsaI incubated at 37�C
for 2 h.

Mutational Analysis of PITX2

The coding regions of PITX2, exons 1–4, were am-
plified by PCR, through use of primers described else-
where (Semina et al. 1996), and were screened for mu-
tations by SSCP and direct sequencing, as described

elsewhere (Kozlowski and Walter 2000). Fragment 4b
was cut with EcoRI prior to SSCP analysis, to yield two
fragments of lengths 283 and 250 bp.

Results

We screened 60 unrelated probands, (29 females and
31 males), with ages at diagnosis of 7–40 years (av-
erage 30.5 years). The mixed ethnicity of this popu-
lation reflected that of the greater Toronto area, with
predominantly English-Canadian, Western and East-
ern European, and French-Canadian ancestry, as well
as Afro-Caribbean, Chinese, Filipino, and North Af-
rican. Fifty-three patients had JOAG alone, six also
had pigmentary glaucoma, and one had mixed-mech-
anism glaucoma of juvenile onset.

Mutational Analysis of MYOC

Screening of MYOC revealed eight different disease-
associated mutations in 8 (13.3%) of the 60 individuals,
all of whom had a positive family history (fig. 1 and
table 2). Polymorphic sequence changes (table 1) were
detected in 9 (15%) of the 60 individuals; all except for
Thr243Thr have been described elsewhere (Alward et
al. 1998a). Six of the eight disease-causing mutations
identified have been previously published, whereas two
were novel—827CrA, (Thr377Lys) in case subject 6,
and 1218 GrT, (Gly399Val) in case subject 7. Case sub-
jects 6 and 7 both had strong family histories of glau-
coma (figs. 1 and 2), which allowed us to confirm the
segregation of the sequence change with the disease phe-
notype. Participants with glaucoma in the family of case
subject 7 all had the novel MYOC Gly399Val mutation
(fig. 2)—which was not present in 140 controls, includ-
ing 40 individuals ethnically matched to this family. Par-
ticipants with glaucoma in the family of case subject 6
(i.e., family 6) all carried the Thr377Lys mutation, which
was not present in 100 controls (fig. 1). The genotype-
phenotype correlation of case subjects with mutations
and their respective family characteristics are summa-
rized in table 2.

Three mutations—Gly367Arg (case subject 3),
Gln368Stop (case subject 4), and Pro370Leu (case
subject 5)—were published elsewhere (Adam et al.
1997; Stone et al. 1997; Suzuki et al. 1997). The clin-
ical manifestations observed here corresponded well
with previously published findings in populations of
mixed ethnicity. However, the phenotype associated
with the Gly252Arg mutation was not previously de-
scribed (Rozsa et al. 1998) and corresponded to a
simple JOAG phenotype in this study (table 2). The
Thr377Lys change occurred in a mixed JOAG and
POAG pedigree, with age at onset being 7–60 years
and IOPs of 25–35 mmHg. This is similar to the



Figure 1 Pedigrees of probands with MYOC mutation, in families 1–6 and 8. Blackened symbols denote affected status for JOAG, grayed symbols denote affected status for POAG, unblackened
symbols denote unaffected or unknown clinical status for glaucoma, and hatched symbols denote pigmentary glaucoma. Slash marks through symbols denote deceased individuals, and bars above
symbols indicate that the individuals who had genetic testing. Arrow indicates the proband. Numbers below the symbols indicate current age (in years), for pedigrees 1–4 and 8; age (in years) at
onset, for pedigree 5; and age (in years) at diagnosis, for pedigree 6.
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Table 1

Polymorphic Sequence Changes in MYOC

SEQUENCE

CHANGE

NO. IN STUDY

POPULATION [%]
(n p 60)

PREVIOUSLY

PUBLISHED?

PUBLISHED FREQUENCY

(%)

In Populations
with POAGa,b

In Control
Populationsa,b

Promoter bp �83 1 [1.7%] Yesa 29.3b 16.3b

Thr243Thr 1 [1.7%] No Not published Not published
Thr293Lys 1 [1.7%] Yesa 17.3a 17.7a

Tyr347Tyr 5 [8.3%] Yesa 4.7b 4.3b

Lys398Arg 1 [1.7%] Yesa 1.2b .8b

a Alward et al. (1998a).
b Fingert et al. (1999).

Thr377Met phenotype, which involved the same co-
don (Alward et al. 1998a). The other three case sub-
jects in our series (case subject 2, carrying Thr293Lys;
case subject 7, carrying Gly399Val; and case subject
8, carrying Ala445Val) demonstrated varied clinical
manifestations (table 2). Case subject 2, (Thr293Lys)
had pigment dispersion glaucoma at the age of 31
(table 2). He had a family history of POAG with an
average age at diagnosis of 51–71 years (fig. 1, ped-
igree 2) that was not confirmed clinically or molec-
ularly by us, because family members were not avail-
able. Case subject 8 (Ala445Val) currently has no
evidence of VF loss and is receiving medication be-
cause of previously documented raised IOP, asym-
metrical discs (cup:disc [C:D] ratio 0.4 right eye, 0.6
left eye) and a family history of POAG (table 2 and
fig. 1, pedigree 8). This mutation was previously as-
sociated with glaucoma for which the clinical mani-
festations were not reported (Alward et al. 1998a).

Mutational Analysis of CYP1B1

Screening of CYP1B1 detected three different mu-
tations in three case subjects (figs. 2 and 3). The mu-
tations and respective genotype-phenotype correlation
are summarized in table 3. These mutations were pres-
ent in the heterozygous state (mutant/wild type [mt/wt])
in two case subjects (case subjects 7 and 10), and the
third was a compound heterozygote (case subject 9).
Two of these mutations, Arg368His and 1546dup10,
have been described elsewhere (Bejjani et al. 2000), but
the Leu345Phe change (4838CrT), within the I-helix of
the heme-binding region, is here reported for the first time
and was not present in 100 controls. For case subject 9,
a diagnosis of JOAG was made at the age of 8 years, but
case subject 9 had two younger siblings for whom CG
was diagnosed (fig. 3 and table 4). All three children with
glaucoma carried both CYP1B1 mutations, and the par-
ents were each a carrier of one mutation. For case subject
10, a heterozygote for a novel missense mutation in exon
2D (Leu345Phe), a diagnosis of JOAG was made at the

age of 36 years, because of characteristic glaucomatous-
field loss. Case subject 10 was also heterozygous for the
Val432Leu polymorphism.

Family 7

Case subject 7 had a MYOC mutation (Gly399Val)
and a CYP1B1 mutation (Arg368His). Case subject 7
(fig. 2, proband III:4) had a strong family history of
autosomal dominant glaucoma with variability in the
age at onset (table 5). All participants with glaucoma
carried the Gly399Val MYOC mutation. This novel mis-
sense MYOC mutation (1218GrT) resulted in substi-
tution of a highly conserved glycine residue within the
olfactomedin domain for a valine. The missense muta-
tion in CYP1B1 exon 3 (7940GrA) resulted in a non-
conservative substitution of arginine 368 by histidine.
This mutation has been described elsewhere (Bejjani et
al. 2000) in a Saudi Arabian population with CG with
incomplete penetrance, and it was not found in 100 Sau-
di Arabian control chromosomes (Bejjani et al. 2000).
We have detected this change in 1/140 (0.7%) control
subjects. This was in an individual of Saudi Arabian
descent with autosomal recessive retinitis pigmentosa
but no glaucoma.

Individuals in this pedigree (fig. 2) carrying both the
CYP1B1 and the MYOC mutations had JOAG with a
mean age at onset of 27 years (range 23–38 years). In-
dividuals with only the MYOC mutation had POAG
with a mean age at onset of 51 years (range 48–64 years).
By a two-tailed unpaired t-test analysis, the difference
in age at onset between these two groups was statistically
significant ( ). Individual IV:3, who has bothP p .001
mutations, is currently 28 years old and was treated for
raised IOPs (28 mmHg) in the past. She currently has
normal IOPs without medication, has suspicious asym-
metric discs (C:D ratios of 0.4, for the right eye, and
0.6, for the left eye), has no evidence of visual-field loss,
and is considered a strong glaucoma suspect. In addition
to variable age at onset, several individuals in this ped-
igree have mixed-mechanism glaucoma (table 5).



Table 2

MYOC Genotype-Phenotype Correlations

CASE SUBJECT

(MUTATION)
ETHNIC

BACKGROUND PHENOTYPE FAMILY HISTORY

AGE AT DIAGNOSIS

(years)
IOP AT DIAGNOSIS

(mmHg)

Proband [Family]
Previously Published

Mean [Range] Proband [Family]
Previously Published

Mean [Range]

1 (Gly252Arg) Chinese JOAG AD JOAG 29 [29–38] NDa 20–21 [20–44] ND
2 (Thr293Lys) Dutch Pigmentary glaucoma AD POAG 31 [51–71], for POAG NDb ND ND
3 (Gly367Arg) Italian/French JOAG AD JOAG 22 [22–30] 28 [8–54]c36.7 d 28 38
4 (Gln368Stop) English JOAG AD POAG 39 59 [36–77]e 30 30 [21–56]
5 (Pro370Leu) Greek JOAG AD JOAG 10 [9–19] 12 [5–27]f,g,h High 20s to 30s [high

20s to 30s]
45 [25–66]

6 (Thr377Lys) Irish/Scottish JOAG AD JOAG, POAG 7 [7–60] 37 [20–60], for
Thr377Metb,i

25 [25–35] 31 [20–50], for
Thr377Met

7 (Gly399Val) Guyanese/East
Indian

Mixed-mechanism JOAG AD JOAG, POAG,
mixed mechanism

28 [23–28] New mutation High 20s to 30s [high
20s to 30s]

New

8 (Ala445Val) French-Canadian OHTN POAG 38 [NA] NDb OHTN ND

Note.— AD p autosomal dominant; OHTN p ocular hypertension; ND p not documented; NA p not available.
a Rozsa et al. (1998).
b Alward et al. (1998a).
c Suzuki et al. (1997).
d Taniguchi et al. (2000).
e Stone et al. (1997).
f Adam et al. (1997).
g Stoilova et al. (1998).
h Taniguchi et al. (1999).
i Simms et al. (1999).

Table 3

CYP1B1 Genotype-Phenotype Correlations

Case Subject (Mutations 1/2) Exon
Codon 432
Genotype

Ethnic
Background

Family
History

Age at Diagnosis,
for Proband [Family]

(years)
IOP at

Diagnosis
Published
Phenotype

Other Mutations
Detected

7 (Arg368His/wild type) 3 Val/Leua East Indian/Guyanese AD JOAG, POAG 27 [23–38] High 20s to 30sb CG, incomplete
penetrancee

MYOC Gly399Val

9 (Arg368His/1546dup10 frameshift) 3 Within duplication Italian/English/Scottish JOAG, CG 8 [2–8] 26/21 [15–34]c CG, incomplete
penetrancee

Nil

10 (Leu345Phe/wild type) 2 Val/Leua African American Nil 36 NDd New Nil

a Heterozygote for this variant.
b See table 5.
c See table 4.
d ND p not documented.
e Bejjani et al. (2000).
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Figure 2 Pedigree of family 7, with CYP1B1 (Arg368His) and MYOC (Gly399Val) mutations. Blackened symbols denote affected status
for JOAG, unblackened symbols denote unaffected or unknown status, and hatched symbols denote affected status for POAG. Arrow indicates
the proband. Numbers above the symbol indicate the identifier, whereas numbers (“1” for wild type and “2” for mutant allele) below the
symbol indicate the genotype for MYOC (top) and for CYP1B1 (bottom).

Figure 3 Pedigree of family 9, with CYP1B1 mutations
(Arg368His and 1546dup10). Blackened symbols denote affected
status for JOAG, whitened symbols denote unaffected or unknown
status, and grayed symbols denote CG, rather than JOAG. Arrow
indicates the proband.

Mutational Analysis of PITX2

Among the 60 individuals screened, no mutations
were found in the coding regions of PITX2.

Discussion

We have shown that MYOC plays a role in 13.3% of the
population with juvenile glaucoma that we studied. All
case subjects with a MYOC mutation had a positive fam-
ily history of autosomal dominant glaucoma, whether
JOAG and/or POAG. The genotype-phenotype correla-
tions of the patients that we studied and of patients with
MYOC mutations who have been described elsewhere
were very similar; for example, the Pro370Leu mutation
has been described elsewhere, in pedigrees with very early
onset (Adam et al. 1997; Stoilova et al. 1998; Taniguchi
et al. 1999), and is here documented in a family in which
the age at onset of glaucoma was 9–19 years. In support
of the severity of this phenotype, an in vitro study of
mutant recombinant myocilin proteins demonstrated
complete insolubility of the Pro370Leu mutant (Zhou
and Vollrath 1999). The novel Thr377Lys mutation has
clinical features very similar to the Thr377Met mutation
that has been described elsewhere (Alward et al. 1998a).
These correlations may help optimize clinical manage-
ment by providing early intervention in a phenotype
known to be severe.

The clinical spectrum associated with the mutations
identified is quite wide. For example, case subject 2
(who had the Thr293Lys MYOC) had glaucoma asso-

ciated with pigment-dispersion syndrome diagnosed at
the age of 31 years. Pigment dispersion and pigmentary
glaucoma are genetically heterogeneous, with putative
loci located on 7q35-q36 (Andersen et al. 1997) and
18q11 (Andersen et al. 1998), but no gene has been
identified. The association of a MYOC mutation with
pigmentary glaucoma is here reported for the first time.
We also describe for the first time the association of
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Table 4

Clinical Features of Affected Individuals of Family 9

CASE

SUBJECT

AND

EYE

AGE

(years)
VISUAL

ACUITY AT

DIAGNOSIS

CORNEAL

DIAMETER AT

DIAGNOSIS

(mm)

ANGLE OR

AGE AT

GONIOTOMYa

IOP AT

DIAGNOSIS

(mmHg)

VERTICAL C:D RATIO

DIAGNOSISAt Diagnosis Currently At Diagnosis Currently

III.1: 8 10 JOAG
Right 20/20 12.25 Normal 26 .4 .4
Left 20/20 12.50 Normal 21 .2 .2

III.2: 5 8 6 years CG
Right 20/20 12.00 34 .6 .6
Left 20/40 13.00 34 .5 .5

III.3: 2.5 5 2.5 years CG
Right 20/50 13.50 18 .5 .7
Left 20/50 13.50 15 .5 .7

a Age at goniotomy is given when angle characteristics were not available.

MYOC mutations with mixed-mechanism glaucoma.
Angle-closure glaucoma was thought to be a genetically
distinct condition, and, at this time, no molecular in-
formation is available other than that some pedigrees
have been reported to have angle-closure glaucoma (Tal-
luto et al. 1998; Salmon 1999). The factor(s) underlying
the significant variability of the expression of MYOC
remain to be identified.

CYP1B1 mutations were present in 3 (5%) of the
60 individuals in the population that we studied, two
of whom had a family history of glaucoma (table 3).
The spectrum of the CYP1B1-associated disease phe-
notype was also much broader than anticipated. The
previously reported CYP1B1 mutations (Arg368His
and 1546dup10) were supportive of autosomal reces-
sive inheritance (Bejjani et al. 2000). Two affected in-
dividuals (case subjects 7 and 10) were heterozygotes
(wt/mt) and had the leucine variant of the Val432Leu
polymorphism. Although the entire coding sequence
of CYP1B1 was analyzed in the patients whom we
studied, it is possible that a second mutation exists in
a promoter or other noncoding region of the other
CYP1B1 allele that was not sequenced. No previous
clinical manifestation of the heterozygous status has
been described, and previously documented obligate
carriers were not reported to have an increased inci-
dence of glaucoma (Bejjani et al. 2000); however, the
incidence of “heterozygote carriers” of CYP1B1 mu-
tations in this group, 2/60 (3.3%), is higher than that
in the 140 control individuals whom we studied (1/
140 [0.7%]; ). It is possible that the hetero-P p .007
zygote state confers increased susceptibility to the de-
velopment of glaucoma. In addition, polymorphisms
such as the leucine variant of the Val432Leu poly-
morphism (8131GrC) may have functional implica-
tions. Studies have suggested that the leucine variant,
compared with the valine 432 variant, has reduced

activity in its ability to 4-hydroxylate 17-b-estradiol
(Shimada et al. 1999, 2001; Hanna et al. 2000; Tang
et al. 2000), although another study shows opposite
results (Li et al. 2000).

The CYP1B1 missense mutation Arg368His, seen in
case subjects 7 and 9, occurs at a CpG dinucleotide
(7940GrA) within the J-helix of the heme-binding re-
gion. It was also reported in an Indian family (Panicker
et al. 2001) and in one family from Saudi Arabia with
autosomal recessive CG. In the latter family, this mu-
tation showed incomplete penetrance, in that it occurred
in the homozygous state in one unaffected individual of
a sibship of four (Bejjani et al. 2000). Incomplete pen-
etrance of CYP1B1 mutations was also described in 22
other pedigrees with four different mutations (Bejjani
et al. 2000); however, not all patients were re-examined.

In family 7 (fig. 2), the combination of MYOC and
CYP1B1 mutations appears to correlate with an earlier
manifestation of the disease. Table 5 demonstrates that
each affected family member with glaucoma who was
tested ( ) carried the MYOC mutation. Thisn p 10
MYOC mutation, Gly399Val, is novel and occurs in the
olfactomedin domain, where the majority of MYOC
mutations occur (Fingert et al. 1999). Those members
carrying both the MYOC and CYP1B1 mutations
( ) are affected with juvenile glaucoma, whereasn p 5
those with only the MYOC mutation ( ) hadn p 4
POAG. The CYP1B1 mutation, Arg368His, may be a
cause of a mild phenotype or a functional polymor-
phism or may modify the expression of MYOC.
Whether the leucine variant of the Val432Leu poly-
morphism, which also segregated with the CYP1B1 mu-
tation, has any functional implications warrants further
investigations.

A recent study shows early menopause in women in-
creases the risk for open-angle glaucoma, which sug-
gests endogenous steroids may contribute to the path-
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Table 5

Clinical and Molecular Characteristics of Members of Family 7 Who Were Affected with Glaucoma

Case
Subject Diagnosis

Age at
Diagnosis

(years)

IOP at
Diagnosis
(OD/OS)

Current
C:D

Ratioa

(OD/OS) Surgery Drops MYOCG399V CYP1B1 R368H

I-2 POAG suspected 106b ND NDc None None 399 �
II-1 MMG 64 21 .9/.9 YLI � � �
II:3 MMG 48 ND ND YLI, Trab OU None � �
III-1 POAG ND ND ND Trab OU None � �
III-2 POAG 48 28/29 .9/total ALT, Trab OU None � �
III-3 JOAG 38 22 .9/.9 Trab OD, ALT OS � � �
III-4 MMG/JOAG 27 25/30 .95/total Trab OU � � �
III-5 POAG ∼50 ND ND ND ND ND ND
III-9 JOAG 23 33/30 .8/.8 Trab OU � � �
III-10 MMG 49 25/28 .4/.5 None � � �
IV-2 JOAG 23 27/28 .7/.7 Trab OS � � �
IV-3 JOAG suspected 31b 21/21 .4/.6 None None � �

NOTE.—OD p right eye; OS p left eye; OU p both eyes; MMG p mixed-mechanism glaucoma (1180 degrees of occludable angle);
Trab p trabeculectomy; ALT p Argon laser trabeculoplasty; YLI p Yag laser iridotomy; ND p not documented.

a Of the optic-nerve head.
b For individuals suspected of having glaucoma, current age is given.
c White nerve through cataract.

ogenesis of glaucoma (Hulsman et al. 2001). Myocilin
is inducible by administration of dexamethasone, a ster-
oid (Polansky et al. 1997). The interaction of CYP1B1
and MYOC has not been investigated. The exact sub-
strate on which CYP1B1 interacts in the eye to cause
glaucoma also remains to be identified. This substrate
should have a role in the metabolism of 4-hydroxylation
of 17-b-estradiol (Murray et al. 2001), an endogenously
produced steroid. In vitro studies of mutant CYP1B1
protein result in decreased 4-hydroxylation of 17-b-es-
tradiol (Stoilov et al. 2001). Metabolic impairment from
the CYP1B1 heterozygous state (mt/wt) may further
compromise the function of the mutant myocilin pro-
tein, with subsequent manifestation of the disease at an
earlier age or influence the action of another glaucoma
gene. This supports the recent work of Craig et al. that
suggests that open-angle glaucoma may not really be a
monogenic disease, at least not in all case subjects (Craig
et al. 2001).

In addition to the potential modifier effect of CYP1B1
mutations on MYOC mutant phenotypes, the functional
implications of CYP1B1 polymorphisms warrants fur-
ther investigations. For example, the Val432Leu variant
is demonstrated to alter the 4-hydroxylation of estradiol
(Shimada et al. 1999, 2001; Hanna et al. 2000; Tang et
al. 2000). The presence of such a Leu432 variation to
those individuals with heterozygote CYP1B1 mutations
may alter the metabolic activity of CYP1B1 enough to
predispose to some changes of the anterior segment and
to the development of glaucoma. Functional studies of
mutant protein, in combination with these polymorphic

variants, on estradiol substrates are required to test this
hypothesis.

The functional implication of polymorphisms has
been studied in a wide range of disorders and has been
associated with increased susceptibility in several in-
stances (Allikmets and the International ABCR Screen-
ing Consortium 2000; Aithal et al. 2001; Buchs et al.
2001; Niesler et al. 2001; Nikpoor et al. 2001; Wilkie
et al. 2001). Additional evidence that other polymor-
phic variants of the cytochrome P450 family differ in
their ability to bind to and metabolize pharmacological
agents and endogenous hormones may explain the var-
iability in responsiveness to medical treatment in glau-
coma (Davies et al. 2001; Ingelman-Sundberg 2001;
Jazwinska-Tarnawska et al. 2001; Kita et al. 2001;
Shintani et al. 2001).

For case subject 9 (II.1 from family 9, who carried
Arg368His and a frameshift mutation resulting from
duplication of 10 bp), JOAG was diagnosed at age 8
years (fig. 3, pedigree 9). At diagnosis, she had raised
IOP, asymmetrical discs, and corneal diameters within
normal limits (Elstan 1997) (table 4). Both of her younger
sibs (III.2 and III.3) had variable expression of CG, which
was diagnosed at ages 5 and 2.5 years, respectively. The
duplicated region included the Val432Leu polymor-
phism, thereby making it difficult to assess whether an
additional variant was present. The molecular associa-
tion of CG and JOAG has here been described for the
first time. These findings, as well as recent evidence of
CYP1B1 mutations in patients with Peters anomaly (Vin-
cent et al. 2001), suggest that the role of CYP1B1 is not
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solely confined to the pathogenesis of CG but is impli-
cated in other forms of glaucoma. This variability of the
CYP1B1-related clinical manifestations and of age at on-
set, together with the incomplete penetrance, again sug-
gests the influence of another genetic factor that will
make the counseling of patients with early-onset glau-
coma difficult.

Mutational analysis of case subjects with early-onset
glaucoma has demonstrated (1) the strong variability
of expression and allelic heterogeneity for MYOC and
CYP1B1 mutations and (2) that congenital and juve-
nile glaucoma are allelic variants, at least in some
cases. The range of the associated phenotypes, in ad-
dition to the incomplete penetrance described else-
where, may have significant implications for the coun-
seling of patients and families. Furthermore, this work
suggests that MYOC and CYP1B1 may interact
through a common pathway and that the inheritance
of glaucoma may be multiallelic in some cases. We
propose that MYOC function may be influenced by
changes in CYP1B1 (including mutations and poly-
morphisms, such as Val432Leu). Molecular character-
ization of juvenile glaucoma was possible in 16% of
cases and will be enhanced as more glaucoma genes
are identified. This work not only emphasizes the ge-
netic heterogeneity and complexity behind the path-
ogenesis of glaucoma but also opens new avenues for
research.
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